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A COMPARISON OF PORTFOLIO OPTIMIZATION RESULTS 

WITH FUZZY KONNO-YAMAZAKI LINEAR PROGRAMMING IN 

BULL AND BEAR MARKETS: THE CASE OF TURKEY1 
 

Abstract. In this study, it is aimed to test whether or not the market regimes 

have impacts on portfolio optimization results by using fuzzy linear programming 

model.In this context, the bull and the bear market regimes of BIST 100 index as 

an accepted market indicator, between January 2000 and December 2016, are 

determined by Markov regime switching model. Portfolio optimization is carried 

out by using the fuzzy linear programming model for each of two different bulls 

and two different bear markets determined as the result of the analysis.According 

to optimization results, the bear markets have similarities within themselves while 

the bull markets differ. Thus, optimization results in the bull and the bear markets 

indicate discrepancies. 

Keywords: Portfolio optimization, fuzzy logic, linear programming, 

markov regime switching models. 
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1. Introduction 

The decision-making process of people’s lives takes place under 

uncertainties. Expression ssuch as “probably,”“not very clear” and “quite 

dangerous” which are frequently heard in daily life are the outcome of 

uncertainties. Therefore, if uncertainties are not taken into account in the decision-

making process, the expected results may be misleading (Shahraki and Paghaleh, 

2011). 

The uncertainties within investments affect investors’ decisions. Because 

uncertainties cause a risk when they become measurable. In terms of investors, one 

pillar of investment decisions constitutes a risk while the other pillar of investment 

decisions is expected return.In terms of investment decisions, however, the concept 

of creating a portfolio of various investment instruments in order to minimize risk 

has been found in finance literature along with the conventional portfolio theory. 

                                                 
1This research has been supported by Scientific Research Projects Coordination Unit of 

Niğde Ömer HalisdemirUniversity (Project number: SOB 2017/03 DOKTEP). 
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According to the theory, the more diversified the investment instruments to be 

included in the portfolio, the lower the risk of the portfolio.In modern portfolio 

theory based on Markowitz (1952), it is stated that the securities that would 

constitute a portfolio should be chosen in accordance with the degree of correlation 

between diversified securities.The lower the correlation between securities, the 

lower the risk of the portfolio.This approach is expressed as a modern portfolio 

theory and the risk calculation approach is included in the literature as the mean-

variance model. 

Several different models have been developed to determine the optimal 

portfolio besides the mean-variance model.The semi-variance approach, the lower 

partial moment and Konno and Yamazaki (1991) linear programming model which 

consider risk calculation aspects, the Black and Litterman model which uses 

different methods in expected return calculations, the index models based on beta 

coefficients that consider the relationship between securities and macroeconomic 

factors, and artificial intelligence-based optimization models such as the fuzzy 

logic are used as an alternative to mean-variance model.In this study, it is aimed to 

perform portfolio optimization in bull and bear markets using the Konno Yamazaki 

(KY) linear programming model to compare the obtained results.In this context, 

only a limited number of studies on portfolio optimization conducted separately in 

bull and bear markets have been found during the literature review. Portfolio 

optimization is carried out on the monthly data of the 30 largest and the 30 smallest 

companies traded in the Malaysian stock market with the average variance and the 

fuzzy mean-variance model in Mohamad et al. (2010), one of the pioneering 

studies in this regard. As a result of the analysis, it is stated that the fuzzy mean-

variance model had a tendency to decrease especially in the long-run compared to 

the other models.Kocadağlı and Keskin (2015), conducted portfolio optimization 

with the fuzzy goal programming (FGP) besides conventional methods such as 

mean-variance, mean absolute deviation and minimax using daily data of securities 

in BIST30 index.Three different investment periods are selected in the study.The 

first and the second investment periods are characterized the bear and the bull 

markets, respectively. The third investment period is expressed as the one through 

which the investor profiles who wishes to follow BIST30 index have been 

examined. 

As a result of the analysis, it is stated that the revenue of optimal portfolios 

generated by conventional methods lags behind the revenue of optimal portfolios 

generated by the fuzzy logic model. It is also stated that the portfolio returns 

increase in case of the beta coefficient values of the shares to be placed in the 

portfolio are negative or less than unity in the period which is expressed as a bear 

market.In the period referred to as the bull market, on the other hand, it is stated 

that the revenue of the portfolios comprised of securities with beta coefficients 

higher than unity tends to be higher.In the third and last period, it is stated that 

securities that are synchronized with BIST30 index should be selectedin order to 

create an optimal portfolio.Wang et. al., (2017), compared the fuzzy logic multi-

objective portfolio optimization model and the conventional multi-objective 
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portfolio optimization model both by applying daily data of the 30-day securities 

trading at the New York Stock Exchange (NYSE). As a result of the analysis, it is 

stated that the multi-objective portfolio optimization model is more successful than 

the conventional multi-objective portfolio optimization models and that the 

proposed model market offers more returns in periods when it enters a neutral or 

upward tendency and the risk is lower when the market is on a downward trend.It 

can be stated that the studies in the literature generally differ in terms of portfolio 

optimization results in bull and bear markets. 

In this study, Markov regime switching model is used to determine the bull 

and bear markets using BIST 100 monthly natural logarithmic product between 

2000 - 2016.Later on, during these periods, portfolio optimization is carried out 

separately for the bear and bull markets previously determined by using the closing 

data of 58 securities, which are continuously tradedin BIST 100.The study consists 

of five sections within this framework.In the first section, brief information on the 

risk and expected return along with the portfolio management theories and models 

are given under the introduction heading.In the second section, studies conducted 

on the fuzzy logic model in the literatureare mentioned.In the third section, the 

methods used in the study are introduced.In the fourth section, findings related to 

the performed analyzes are included.In the last section of the study, the obtained 

results are interpretedand suggestions are made. 

 

2. Methodology 

In the study, Markov regime change model is utilized for parametric 

methods in order to determine the regimes in the market.The basic reason for 

choosing the Markov regime switching model over the other models is that it gives 

the probability that switching process would be in time t and regime j(Açıkgöz, 

2008).After the bull and bear market regimes in the markets were identified,the 

fuzzy linear programming model is used for portfolio optimization. The model is 

preferred since it does not require too many constraints and is practical to apply to 

large-scale portfolios. 

 

2.1. Markov Regime Switching Model 

The Markov regime switching model was introduced in the literature with 

univariate Markov regime switching model developed in Hamilton (1989), and 

Krolzig (1997), also allowed for a wide range of field use by adapting it to 

multivariate analyzes (Koy et. al., 2016).The main rationale of the Markov regime 

switching model is to explain the stochastic process that causes a transition from 

one regime to another with a Markov chain. The Markov chain is used to model the 

behavior of a state variable or combination of variables whichare not directly 

observable in determiningthe presentregime (Bildirici et.al., 2010).  

In Hamilton (1989), the contraction and expansion periods of the economy, 

in other words, the regimes are calculated according to the non-observable random 

variable 𝑠𝑡of integer value (Brooks, 2014). For this purpose, the 2-regime MSA-

AR (p) model developed in Hamilton (1989) is as follows: 
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𝑦𝑡 = {
𝜙1,0 + 𝜙1,1𝑦𝑡−1 + ⋯ + 𝜙1,𝑝𝑦𝑡−𝑝 + 𝜀𝑡    𝑖𝑓  (𝑠𝑡 = 1)

𝜙2,0 + 𝜙2,1𝑦𝑡−1 + ⋯ + 𝜙2,𝑝𝑦𝑡−𝑝 + 𝜀𝑡    𝑖𝑓  (𝑠𝑡 = 2)
} (1) 

𝑦𝑡 =  𝜙0,𝑠𝑡
+ 𝜙1,𝑠𝑡

𝑦𝑡−1 + ⋯ + 𝜙𝑝,𝑠𝑡
𝑦𝑡−𝑝 + 𝜀𝑡   (2) 

 

𝑦𝑡: Time-series variable 

𝜙:Autoregressive lag parameters of the regimes 

𝑠𝑡: The values of the regimes 

𝑝: Autoregression rank of the model 

𝜀𝑡: Error terms 

 

In the Markov regime switching model, the regime variable𝑠𝑡cannot be 

observed directly but the financial time-series 𝑦𝑡  can be observed.The 

characteristics of the time series 𝑦𝑡 that can be observed depend on the unobserved 

regime variable𝑠𝑡(Krolzig, 1997).The Markov regime change model, which 

explains relations among regimes in a two-regime model, is as follows (Hamilton, 

1994): 

𝑃{𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖} = 𝑃{𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖, 𝑠𝑡−2 = 𝑘, … } = 𝑝𝑖𝑗 (3) 

 

Models and regime transition probabilities matrix expressing the 

probability of transition between regimes in a 2-regime model are expressed as 

follows: 

𝑃𝑟[𝑠𝑡 = 1|𝑠𝑡−1 = 1] = 𝑝11 = 𝑝    (4) 

𝑃𝑟[𝑠𝑡 = 0|𝑠𝑡−1 = 1] = 𝑝10 = 1 − 𝑝    (5) 

𝑃𝑟[𝑠𝑡 = 0|𝑠𝑡−1 = 0] = 𝑝00 = 𝑞    (6) 

𝑃𝑟[𝑠𝑡 = 1|𝑠𝑡−1 = 0] = 𝑝01 = 1 − 𝑞    (7) 

𝑃 = [
𝑞 1 − 𝑞

1 − 𝑝 𝑝
]      (8) 

 

The values (𝑝11, 𝑝10, 𝑝00, 𝑝01) that represent the transition probabilities 

among the regimes must be positive and their sums must be equal to unity(𝑝11 + 

𝑝10 = 1 and𝑝00+ 𝑝01 = 1)  (Franses and Dijk, 2000). 

 

2.2. Fuzzy Linear Programming Model 

The concept of fuzzy logic is studied as a subdivision of artificial 

intelligence studies.It emerged as a product of very valuable works of logic 

suggestingthe possible existence of the third or fourth etc. options, whereas 

Aristotelian, bivalent logic stated that a propositionmight be either true or false 

withouta third alternative (Birgili et. al., 2013). Zadeh (1965), is one of the earliest 

studies conducted in the field of a fuzzy logic model which defined fuzzy logic as a 

synonym of fuzzy set theory in abroad sense, and as a structure that provides 

benefits to the logic system as a form of approximate reasoning in thenarrow sense. 

Following Zadeh (1965), Bellman and Zadeh (1970), stated that fuzzy logic should 
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be used in the decision-making process. All the parameters in the decision-making 

process involve fuzziness which causes many problems.Probability software or 

multi-objective programming models used for the solution of such problems are 

insufficient (Maleki et. al., 2000). 

The fuzzy linear programming model is an extended and blurred version of 

the classical linear programming model which includes the linear programming 

model and the fuzzy logic properties.In the fuzzy linear programming model, there 

are three different solution approaches.These are of Verdegay (1982), 

Zimmermann (1983), and Werners (1987).In Verdegay (1982), approach, the 

highest membership level of the fuzzy decision set is not determined.Moreover, 

since the objective function is not considered as constraints, the solution is not 

symmetrical. In Zimmermann (1983), approach, the maximum and minimum 

membership levels are formed by asking the decision-maker.Werners (1987), 

approach suggested that the maximum and minimum membership levels should 

not be set by the decision-maker and that it should be achieved using the max-min 

operation (Verdegay, 1982; Werners, 1987; Zimmermann, 1991).Establishing the 

membership level with the max-min operation caused Werners (1987), approach to 

be preferred over other approaches. 

The application of the fuzzy linear programming model to portfolio 

optimizations is used along with the KY linear programming model. As a result of 

the fuzziness of the objective function, KY linear programming model is 

transformed into a fuzzy KY linear programming model. The objective function 

and constraints created by applying the Werners (1987), approach to the fuzzy KY 

linear programming model can be expressed as follows (Lai and Hwang, 1992). 

 

Objective Function:   

Min 𝑍 ∑
𝑦𝑡

𝑇
𝑇
𝑡=1        (9) 

Constraint 1: 

𝑦𝑡 − ∑ 𝑎𝑡𝑗𝑥𝑗 ≥ 0             𝑡 = 1,2, … , 𝑇𝑛
𝑗=1              (10) 

Constraint 2: 

𝑦𝑡 + ∑ 𝑎𝑡𝑗𝑥𝑗 ≥ 0             𝑡 = 1,2, … , 𝑇𝑛
𝑗=1    (11) 

Constraint 3: 

∑ 𝑟𝑗𝑥𝑗 ≥ 𝜌𝑀0
𝑛
𝑗=1 + 𝛼𝜏     𝛼 ∈ [0,1]    (12) 

Constraint 4: 

∑ 𝑥𝑗 = 𝑀0
𝑛
𝑗=1        (13) 

 

Given 𝛼 ∈ [0,1] with the model,  it can be determined at which level of 

investment should be made to which securities at the satisfaction level determined 

by solving the expected return of the portfolio according to different satisfaction 

levels when the model is applied for portfolio optimization. At this phase, the 

expected target return and risk values corresponding to a certain level of 

satisfaction can be determined.However, the model cannot provide a complete 

solution to determine optimal portfolio among various return and risk 
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combinations.In this context, the model is first solved for the expected returns 

of 𝜌𝑀0 (𝛼 = 0.1) and 𝜌𝑀0 + 𝜏 (𝛼 = 1), and then objective function values 𝑍0 and 

𝑍1are found. As the expected return level in the model increases, 𝑍1 > 𝑍0since 

risk would also increase. Membership functions that are created by using 𝑍0and 

𝑍1values can be expressed as follows (Shahraki and Paghaleh, 2011): 

 

𝜇𝑧(𝑥) = {

1,                                       𝑍 < 𝑍0

1 − [𝑍 − 𝑍0]/𝑍1 − 𝑍0, 𝑍0 ≤ 𝑍 ≤ 𝑍1

0,                                       𝑍 > 𝑍1

}  (14) 

 

𝜇𝑘(𝑥) = {

0,                                       ∑ 𝑟𝑗𝑥𝑗 < 𝜌𝑀0
𝑛
𝑗=1

[∑ 𝑟𝑗𝑥𝑗 − 𝜌𝑀0
𝑛
𝑗=1 ]/𝜏, 𝜌𝑀0 ≤ ∑ 𝑟𝑗𝑥𝑗 ≤ 𝜌𝑀0 + 𝜏𝑛

𝑗=1

1,                                       ∑ 𝑟𝑗𝑥𝑗 > 𝜌𝑀0 + 𝜏𝑛
𝑗=1

} (15) 

 

 

The objective function and constraints of the fuzzy KY linear 

programming model represented by the membership function of the expected 

return (𝜇𝑘(𝑥)) and the membership function of objective 𝜇𝑧(𝑥) using the max-min 

method can be shown as follows (Shahraki and Paghaleh, 2011): 

 

Objective function: 

𝑀𝑎𝑥 𝛼   (𝜇𝑧(𝑥) ≥ 𝛼, 𝜇𝑘(𝑥) ≥ 𝛼, 𝑥 ≥ 0, 𝛼 ∈ [0,1])  (16) 

Constraint 1: 

∑ 𝑦𝑡/𝑇 + 𝛼(𝑍1 − 𝑍0) ≤ 𝑍1𝑇
𝑡=1      (17) 

Constraint 2:  

𝑦𝑡 − ∑ 𝑎𝑡𝑗𝑥𝑗 ≥ 0             𝑡 = 1,2, … , 𝑇𝑛
𝑗=1    (18) 

Constraint 3:  

𝑦𝑡 + ∑ 𝑎𝑡𝑗𝑥𝑗 ≥ 0             𝑡 = 1,2, … , 𝑇𝑛
𝑗=1    (19) 

Constraint 4:  

∑ 𝑟𝑗𝑥𝑗 ≥ 𝜌𝑀0
𝑛
𝑗=1 + 𝛼𝜏     𝛼 ∈ [0,1]    (20) 

Constraint 5:  

∑ 𝑥𝑗 = 𝑀0
𝑛
𝑗=1   (0 ≤ 𝑥𝑗 ≤ 𝜇𝑗,   𝑦𝑡 ≥ 0)               (21) 

  

At the acceptable level of satisfaction (𝛼 ∈ [0,1]) by using the model, it 

can be calculated which securities are invested at which ratios.The following are 

the parameters used in the model: 

𝑇 : The number of examined periods,  

𝑡 : Any time t over T periods,  

 𝜌 : The expected rate of return, 

𝑟𝑗 : The average rate of return of the jth security,  

𝑟𝑗𝑡 : The rate of return of the jth security in any time t, 
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𝑎𝑡𝑗 : The risk of the jth security (𝑟𝑗𝑡 − 𝑟𝑗), 

𝑥𝑗 : The share of investment on the jth security, 

𝜇𝑗 : The upper limit of the investment on the jth security,  

𝑀0 : Total amount of investment,   

𝜌𝑀0 : The amount of expected return, 

𝑦𝑡 : The auxiliary variable, 

𝜏 : The known tolerance value of expected rate of return 

𝛼 : The level of return demanded 

 

3. Numerical Example 

The application of the study consists of two phases. Firstly, the periods of 

the bull and the bear markets are determined by the Markov regime switching 

model using natural logarithm of the monthly BIST 100 index within the period 

under examination. Then, portfolio optimization is carried out with the fuzzy 

Konno Yamazaki linear programming model for each identified bull and bear 

markets. 

 

3.1. Determining Bull and Bear Markets with Markov Regime Switching 

Model 

By using BIST 100 index data set and the Markov regime switching 

model, the bull and bear market periods in the related data set can be 

determined.First of all, in order to determine the appropriate autoregressive lag and 

the MS (Markov Switching) model, the Markov regime switching models with 

coherent transition matrices and robustness test results which satisfy non-linearity 

condition are given in Table 1. 

 

Table 1: The results of Markov regime switching models 
Model Log-likelihood AIC LR Davies 

MSIH 2 (1) 196.431 -1.876 46.615* 0.000 

MSIH 2 (2) 196.563 -1.867 46.368* 0.000 

MSIH 2 (3) 195.666 -1.857 46.317* 0.000 

MSIH 2 AR 1 197.363 -1.875 45.932* 0.000 

MSIH 2 AR 2 196.539 -1.867 46.319* 0.000 

MSIH 2 AR 3 195.659 -1.857 46.303* 0.000 

MSIH 2 AR 1 (1) 196.422 -1.875 46.596* 0.000 

MSIH 2 AR 2 (1) 195.586 -1.867 47.111* 0.000 

MSIH 2 AR 1 (2) 195.468 -1.875 47.372* 0.000 

MSIH 2 AR 2 (2) 195.452 -1.874 46.611* 0.000 
*: significant at 1% significance level. 

In Table 2, Markov switching models are given comparatively according to 

various lags and autoregressive lag cases. Accordingly, the models with incoherent 

transition matrices and robustness test results which do not satisfy nonlinearity are 

excluded. Under these criteria, MSIH 2 (1) model with lag-1having the lowest 
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Akaike (AIC) information criterion is chosen.Table 2 presents the test results of 

MSIH 2 (1) model with lag-1. 

 

Table 2: Criteria of a lagged MSIH 2 (1) model 

Model: MSIH 2 (1) Coefficients t Prob. 

Constant (Regime 1) (Bear Market) -0.006   0.768 

Constant (Regime 2) (Bull Market)      0.015** 0.016 

Sigma (Regime 1)    0.150* 0.000 

Sigma (Regime 2)    0.067* 0.000 

LR-test Chi2 (4)  45.952* 0.000 

Davies Probability Value 0.000 

Normality test:   Chi2 (2)   0.750 0.687 

ARCH 1-5 test:    F(5.299)   0.376 0.540 

Portmanteau(36):  Chi2(36) 32.742 0.578 
*: significant at 1% significance level. 

**: significant at 5% significance level.  

Upon examining Table 2, it is seen that BIST 100 index data set which is 

used in analysis according to LR (Likelihood Ratio) linearity and Davies test 

results from the test statistics of the model exhibit nonlinear structure and two 

regimes are formed.In this context, when the relevant coefficients (sigmas) are 

examined, the first regime is determined as highly volatile while the second regime 

is characterized by lower volatility. The return for the first regime is negative, yet 

the return for the second regime is positive.Thus, it can be said that the first and the 

second regimes represent the bear and the bull markets, respectively.When the 

results of model-related robustness tests such as normality, ARCH, and 

Portmanteau test are considered, it is seen that there is no normal variance of the 

error terms, and hence no autocorrelation. Table 3 indicates the regime transition 

matrices of BIST 100 index data set. 

 

Table 3: The regime transition probability matrix 

 

Regime 1 Regime 2 

Number of 

Observations 

(Months)–(%) 

Average 

Duration 

(Months) 

Regime 1         

(Bear Market) 
0.968 0.032 67 – 33% 33.50 

Regime 2      

(Bull Market) 
0.009 0.991 136 – 67% 68 

Upon examining the matrix of regime transition probabilities, the 

probability of switching to regime 2 (with low volatility, positive return and the 

bull market) is 3%, while the probability of staying in regime 1 (with high 

volatility, negative return, and the bear market) is about 97% in transition from t to 

t+1. 
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Similarly, the probability of switching to regime 1 (with high volatility, 

negative return,and the bear market) is 1%, while the probability of staying in 

regime 2 (with low volatility, positive return and the bull market) is about99% in 

thetransitionfrom tto t+1.According to the results, persistence characteristics are 

observed in both regimes.The average durations of stay in regime 1(which is 

expressed as the bear market) and regime 2 (which is expressed asabull market) are 

33.50 and 68 months, respectively.According to the results, 67% (136 months) of 

the analyzed period is in the bull market period and 33% (67 months) in the bull 

market period.It is seen that the bull market has higher ratiosin terms of total 

period, average duration of stay and probability in comparison to the bear 

market.In Table 4, date intervals covering the bull and the bear market periods are 

given. 

 

Table 4:  The date intervals defined as the bull and the bear markets 
Bear Market  Bull Market  

Periods 
Duration 

(Months) 
Probability 

Standard 

Deviation 
Periods 

Duration 

(Months) 
Probability 

Standard 

Deviation 

2000(2)  - 

2004(2) 
49 0.97 0.20 

2004(3)- 

2007(11) 
45 0.95 0.12 

2007(12)- 

2009(5) 
18 0.87 0.17 

2009(6)- 

2016(12) 
91 0.98 0.13 

 

As shown in Table 4, there are two different bears and two different bull 

markets based on the results of the analysis.The first bear market includes the 

period February 2000 - February 2004, while the second bear market includes the 

period December 2007 - May 2009.  

The first bull market covers March 2004 - November 2007, while the 

second bull market covers June 2009 - December 2016.In this context, it is 

detected that a total of 49 month period between February 2000 -February 2004 

and a total of 18 month period between December 2007 - May 2009 could be 

classified as the bear market with probabilities of 97% and 87%, respectively. On 

the other hand, it is detected that a total of 45 month period between March 2004 - 

November 2007 and a total of 91 month period between June 2009 - December 

2016 could be classified as the bear market with probabilities of 95% and 98%, 

respectively. Nonetheless, the average standard deviation of totally 58 securities 

subject to the analysis is calculated as 0.20 in the first bear market period and 0.17 

in the second bear market period, whileit is found as 0.12 in the first bull market 

and 0.13 in the second bull market. 

 

3.2. Portfolio Optimization with Fuzzy Konno-Yamazaki Linear 

Programming Model 

Portfolio optimization has been tried to be performed by utilizing the fuzzy 

KY linear programming model with the monthly frequency data of totally 58 

securities which are firstly analyzed in the bull markets and then in the bear 

markets.Following the calculation of monthly returns on the securities subject to 



 

 

 

 

 

 
Ömer Iskenderoglu, Saffet Akdag 

__________________________________________________________________ 

204 

 

DOI: 10.24818/18423264/53.4.19.12 

 

 

analysis, the average expected rates of return on the securities(𝜌) and the maximum 

average expected rates of return on the securities(𝜌max ) are found.After calculating 

of the tolerance (𝜏) of the expected return which represents the difference of the 

average return from the maximum average yield, the membership function of the 

expected return is established. 

Within the optimization process, the objective function becomes fuzzy by 

the Werners (1987) approach.The objective function in the model is the 

minimization of the sum of the yt function calculated for each period.The yt 

function is calculated by subtracting the rates of return on the securities in period t 

from the average rates of return on the relevant securities as the coefficients of the 

decision variables and taking the absolute value of this outcome. Thus, the 

objective function to be minimized for each period considered as either a bull or a 

bear market is formed by using the function yt calculated for each period.The 

variable yt is the absolute value of the difference between the rate of return on each 

security in time t and the average return on each related security denoted as     
𝑎𝑡𝑗 =  (𝑟𝑗𝑡 − 𝑟𝑗), ∑ | ∑ 𝑎𝑡𝑗𝑥𝑗|𝑛

𝑗=1
𝑇
𝑡=1 . 

Therefore, upon the possibility that the variables in the absolute value may 

be positive or negative, the related variables with plus and minus signs are included 

in the model as the first and the second constraints. The third constraint is that the 

sum of the multiplication of the share of investment made to each security by the 

average return on each security must be greater than or equal to the multiplication 

of average return (or expected return) by the total investment amount. This 

constraint has previously been expressed as ∑ 𝑟𝑗𝑥𝑗 ≥ 𝜌𝑀0
𝑛
𝑗=1 + 𝛼𝜏. Accordingly, 

the constraint is defined as Ƶ0for 𝛼 = 0 and Ƶ1for 𝛼 = 1.The fourth and last 

constraint is the one that the sum of the variables 𝑥 representing the weight of the 

investment shares must equal to unity. Equations expressing the objective function 

and constraints for the solution of Ƶ0 and Ƶ1are given in the appendix. 

By solving the model, the values of Ƶ0and Ƶ1of the objective function are 

obtained. Ƶ0 represents the risk value of the optimal portfolio corresponding to 

complete satisfaction, and Ƶ1represents the risk value of the optimal portfolio 

corresponding to complete dissatisfaction.The membership function is created by 

substituting Ƶ0for 𝛼 = 0and Ƶ1for 𝛼 = 1. 

By substituting the membership function, the fuzzy objective and resource 

linear programming model is transformed into the standard linear programming 

model.In this regard, the objective function and the equations expressing the 

constraints are given in the appendices.Upon the solution of the model established 

by fuzzy KY linear programming, the satisfaction level 𝛼 is found through which 

the optimal portfolio would be formed. This value also determines the optimal 

portfolio that provides the highest return per unit risk (Pelitli, 2007: 142).The 

optimal portfolio corresponding to the determined 𝛼 level is obtained from the 

membership function of minimized risk and maximized return. The portfolio 

optimization results of the bull and bear markets according to the analysis are 

given in Table 5 and Table 6. 



 

 

 

 

 
A Comparison of Portfolio Optimization Results with Fuzzy Konno-Yamazaki 

Linear Programming in Bull and Bear Markets: The Case of Turkey 

__________________________________________________________________ 

205 

 

DOI: 10.24818/18423264/53.4.19.12 

 

 

 

Table 5: The result regarding the bull markets 
Markets Number of 

Assets in 

the 

Portfolio  

Portfolio Risk 

According to 

Konno-Yamazaki 

Model  

Portfolio Risk 

According to 

Markowitz Model 

Return on 

Portfolio  

The First Bull 

Market 
5 0.032 0.085 0.060 

The Second 

Bull Market 
3 0.146 0.455 0.086 

Average 4 0.089 0.270 0.073 

 

According to Table 5, the bull markets exhibit similarities in terms of the 

number of assets in the optimal portfolio, the return on portfolio and the risk 

involved.In this context, it can be stated that portfolio optimization results in the 

bull markets differ. 

 

Table 6: The results regarding the bear markets 
Markets Number of 

Assets in 

the 

Portfolio 

Portfolio Risk 

According to 

Konno-Yamazaki 

Model 

Portfolio Risk 

According to 

Markowitz Model 

Return on 

Portfolio 

The First 

Bear Market 
3 0.077 0.198 0.066 

The Second 

Bear Market 
3 0.051 0.146 0.068 

Average 3 0.064 0.172 0.067 

 

According to Table 6, it can be said that in the bear markets exhibit 

similarities regarding the return on the optimal portfolio generated by the fuzzy KY 

linear programming model, the number of assets, and the risk involved.In this 

context, it can be stated that the portfolio optimization results show similarity in 

the bear markets. 

 

4. Conclusion 

In this study, it is aimed to compare the optimal portfolios generated by the 

fuzzy KY linear programming model in both the bull and the bear markets.Firstly, 

the bull and the bear markets within the relevant date intervals (January 2000 - 

December 2016) are determined by employing the Markov regime switching 

model on the basis of the natural logarithmic returns of BIST 100 index with 

monthly frequency. Markov regime switching model has revealed that there are 

two different bears and two different bull markets.For the bull and the bear markets 

identified during the next phase of the study, portfolio optimization is carried out 

with 58 securities that continued their existence throughout the sample period in 

BIST 100 index using the fuzzy KY linear programming model.The results 
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obtained from portfolio optimization indicate that the returns and risks of the 

optimal portfolios created in the bear markets have similar characteristics in terms 

of the number of securities in the portfolio. In the bull market, however, there are 

differences regarding the returns on the generated optimal portfolios, the number of 

securities in the portfolioand risks involved. 

This study is conducted to determine whether or not the portfolio 

optimization results, which constitute the aim of the study in this context, differ in 

the bull and the bear markets. Consequently, it is concluded that portfolio 

optimization results are different in both markets.Furthermore, when the bull and 

the bear markets are considered as a whole, the optimal portfolios created in the 

bear markets offer lower risk, while the portfolios created in the bull markets offer 

higher returns, which areconsistent with the results of Wang et al., (2017). 

Upon assessment of the results of the study in terms of investors, it may be 

advisable for potential investors to follow active portfolio strategies in the bull 

markets, and to follow the passive management strategies in the bear markets. 

However, the obtained results are achievedvia the fuzzy KY linear programming 

model.For the future studies, the use of other optimization models such as mean-

variance, semi-variance, and index models for portfolio optimization in the bull 

and the bear markets and the realization of analyzes in different country markets 

would contribute to the literature in the sense of generalizing the results. 
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Appendix 1. 

Table 7: Securities included in the analysis 

Variables 
Security 

Code 
Security’s Name Variables 

Security 

Code 
Security’s Name 

X1 AFYON AfyonÇimento X30 IZMDC İzmir DemirÇelik 

X2 AKBNK Akbank X31 KRDMD KardemirDemirÇelik 

X3 AKSA AkrilikKimya X32 KARTN KartonSanayi 

X4 ALGYO Alarko GYO X33 KCHOL Koç Holding 

X5 ALARK Alarko Holding X34 KONYA Konya Çimento 

X6 ANACM Anadolu Cam X35 KORDS KordsaTekniktekstil 

X7 ARCLK Arçelik X36 METRO Metro Holding 

X8 ASELS Aselsan X37 MGROS Migros 

X9 AYGAZ Aygaz X38 NTTUR Net Turizm 

X10 BAGFS 
BandırmaGübre 

Fab. 
X39 NETAS Netaş Tel. 

X11 BANVT BandırmaYem X40 NUGYO Nurol GYO 

X12 BRISA Bridgestone Lastik X41 OTKAR OtokarotobüsKar. 

X13 CLEBI ÇelebiHavaServis X42 PARKME Park Elektrik 

X14 CEMTS ÇemtaşÇelikMak. X43 PETKM Petkim Petro Kimya 

X15 DEVA Deva Holding X44 SAHOL Sabancı Holding 

X16 DOHOL Doğan Holding X45 SASA Sasa Polyester 

X17 ECILC Eczacıbaşıİlaç X46 SISE T.Şişeve Cam Fab. 

X18 EGEEN EgeEndüstri X47 TSKB 
Türkiye Sınai 

veKalkınma Ban. 

X19 ENKAI Enka İnşaat X48 TATGD Tat Gıda 

X20 ERBOS EreğliBoru San. X49 KIPA Tesco Kipa 

X21 EREGL EreğliDemirÇelik X50 TOASO TofaşTürk Oto. 

X22 FROTO Ford Oto San. X51 TRKCM Trakya Cam 

X23 GARAN GarantiBankası X52 TUPRS Tüpraş 

X24 GLYHOL 
Global Yat. 

Holding 
X53 THYAO TürkHavaYolları 

X25 GOODY Goodyear Lastik X54 ULKER Ülker Gıda 

X26 GSDHOL GSD Holding X55 VKGYO Vakıf GYO 

X27 GUBRF GübreFabrikaları X56 VESTEL Vestel 

X28 ISCTR İşbank C X57 YKBNK YapıKrediBankası 

X29 ISGYO İş GYO X58 YATAS Yataş 

 


